Chapter 3 Practice Test

For #1 to 5, select the best answer.

- **1.** In the equation $-(-2)^5 = -32$, which number represents the base of the power? **A** -32 **B** -2 **C** -1 **D** 2
- **2.** Which expression is equivalent to $(-2) \times (-2) \times (-2) \times (-2) \times (-2)$? **A** 2⁵ **B** 32 **C** $(-2)^5$ **D** $-(-2)^5$
- **3.** What is the product of 5^2 and 5^4 ? **A** 650 **B** 25⁶ **C** 5⁸ **D** 5⁶
- **4.** Devin was asked to simplify the expression $10 2^3 \times (3 2^0)^2$. His work is shown below.
 - $10 2^{3} \times (3 2^{0})^{2}$ = 10 - 6 × (3 - 1)² Step 1 = 10 - 6 × 4 Step 2 = 10 - 24 Step 3 = -14 Step 4

In which step did Devin make his first mistake?

A Step 1 B Step 2 C Step 3 D Step 4

5. Two students were asked to write each product of powers as a single power. Their work is shown below.

Danica	Frank
$3^3 \times 3^2 = (3 \times 3 \times 3) (3 \times 3)$	$3^3 \times 3^2 = 3^{3 \times 2}$
$= 3^{3}$	$= 3^{\circ}$

Which of the following statements about their procedures is true?

- A Frank's procedure contains an error and Danica's does not.
- **B** Danica's procedure contains an error and Frank's does not.
- **C** Both Danica and Frank have no errors in their procedure.
- **D** Both Danica and Frank have errors in their procedure.

Complete the statements in #6 and 7.

6. The value of $3^3 + 3^0$ is .

7. The expression $-\left(\frac{5}{10}\right)^3$ written as a fraction in simplified form is \square .

Short Answer

8. Arrange the powers in order from smallest value to largest value. $(-4)^2$, $(2)^3$, $-(4)^3$, $(-1)^5$

9.Write each expression as repeated multiplication.

a) 3^7 **b)** $-(-6)^5$ **c)** $(4 \times 5)^3$

10. Write each expression as a power in simplified form.

a) $6^7 \div 6^4$ **b)** $(2^2 + 3)^4$ **c)** $(2^4)^3$

11. Explain in words the difference between the powers 11^3 and 3^{11} .

Extended Response

12. For every metre a scuba diver dives below the water surface of a lake, the light intensity is reduced by 5%. The percent of light intensity can be represented by the equation $I = 100(1 - 0.05)^d$, where I is the intensity of light, as a percent, and d is the depth of the dive, in metres. The intensity of light at the surface of the lake is 100%. Austin wanted to determine the light intensity at a depth of 3 m. His solution is shown below.

$$I = 100(1 - 0.05)^d$$

 $I = 100(1 - 0.05)^3$

 $I = 100(1^3 - 0.05^3)$

I = 100(0.999875)

$$I \approx 100$$

Austin realized that it is not possible for the light intensity to be approximately 100% at a depth of 3 m. Explain where Austin made his mistake.

- **a)** Correct Austin's mistake and provide a detailed solution to determine the percent of light intensity at a depth of 3 m. Give your answer to the nearest whole percent.
- **b)** What is the light intensity at a depth of 15 m? Give your answer to the nearest whole percent.

Chapter 3 Practice Test Answers

- **1.** D
- **2.** C
- **3.** D
- **4.** A
- **5.** D
- **6.** 28 **7.** $-\frac{1}{8}$
- **8.** -(4)³, (-1)⁵, 2³, (-4)²
- **9. a)** 3 × 3 × 3 × 3 × 3 × 3 × 3 **b)** (-1) × (-6) × (-6) × (-6) × (-6) × (-6) **c)** 4 × 4 × 4 × 5 × 5 × 5
- **10. a)** 6³ **b)** 7⁴ **c)** 2¹²

11. 11^3 means that a base of 11 is multiplied 3 times: $11^3 = 1331$. 3^{11} means that a base of 3 is multiplied 11 times: $3^{11} = 177$ 147.

12. a) In the third line, Austin incorrectly distributed the exponent over subtraction to the bases of 1 and 0.05. You can only distribute an exponent over multiplication: $(ab)^x = a^x b^x$. $I = 100(0.95)^3$; I = 100(0.857375); $I \approx 86$. The light intensity is approximately 86%.

b) When d = 15, I = 46%.