Chapter 3 Practice Test

For \#1 to 5, select the best answer.

1. In the equation $-(-2)^{5}=-32$, which number represents the base of the power?
A - 32
B - 2
C-1
D 2
2. Which expression is equivalent to $(-2) \times(-2) \times(-2) \times(-2) \times(-2)$?
A 2^{5}
B 32
C (-2) ${ }^{5}$
D $-(-2)^{5}$
3. What is the product of 5^{2} and 5^{4} ?
A 650
B 25^{6}
C 5^{8}
D 5^{6}
4. Devin was asked to simplify the expression $10-2^{3} \times\left(3-2^{0}\right)^{2}$. His work is shown below.

$$
\begin{aligned}
& 10-2^{3} \times\left(3-2^{0}\right)^{2} \\
= & 10-6 \times(3-1)^{2} \\
= & 10-6 \times 4 \\
= & 10-24 \\
= & -14
\end{aligned}
$$

Step 1
Step 2
Step 3
Step 4

In which step did Devin make his first mistake?
A Step 1
B Step 2
C Step 3
D Step 4
5. Two students were asked to write each product of powers as a single power. Their work is shown below.

Danica

$\begin{aligned} 3^{3} \times 3^{2} & =(3 \times 3 \times 3)(3 \times 3) \\ & =3^{5}\end{aligned}$

Frank

$$
\begin{aligned}
3^{3} \times 3^{2} & =3^{3 \times 2} \\
& =3^{6}
\end{aligned}
$$

Which of the following statements about their procedures is true?
A Frank's procedure contains an error and Danica's does not.
B Danica's procedure contains an error and Frank's does not.
C Both Danica and Frank have no errors in their procedure.
D Both Danica and Frank have errors in their procedure.

Complete the statements in \#6 and 7.
6. The value of $3^{3}+3^{0}$ is \square
7. The expression $-\left(\frac{5}{10}\right)^{3}$ written as a fraction in simplified form is \square.

Short Answer

8. Arrange the powers in order from smallest value to largest value. $(-4)^{2},(2)^{3},-(4)^{3},(-1)^{5}$
9.Write each expression as repeated multiplication.
a) 3^{7}
b) $-(-6)^{5}$
c) $(4 \times 5)^{3}$
9. Write each expression as a power in simplified form.
a) $6^{7} \div 6^{4}$
b) $\left(2^{2}+3\right)^{4}$
c) $\left(2^{4}\right)^{3}$
10. Explain in words the difference between the powers 11^{3} and 3^{11}.

Extended Response

12. For every metre a scuba diver dives below the water surface of a lake, the light intensity is reduced by 5%. The percent of light intensity can be represented by the equation $I=100(1-0.05)^{d}$, where I is the intensity of light, as a percent, and d is the depth of the dive, in metres. The intensity of light at the surface of the lake is 100%. Austin wanted to determine the light intensity at a depth of 3 m . His solution is shown below.
$I=100(1-0.05)^{d}$
$I=100(1-0.05)^{3}$
$I=100\left(1^{3}-0.05^{3}\right)$
$I=100(0.999875)$
$I \approx 100$
Austin realized that it is not possible for the light intensity to be approximately 100% at a depth of 3 m . Explain where Austin made his mistake.
a) Correct Austin's mistake and provide a detailed solution to determine the percent of light intensity at a depth of 3 m . Give your answer to the nearest whole percent.
b) What is the light intensity at a depth of 15 m ? Give your answer to the nearest whole percent.

Chapter 3 Practice Test Answers

1. D
2. C
3. D
4. A
5. D
6. 28
7. $-\frac{1}{8}$
8. $-(4)^{3},(-1)^{5}, 2^{3},(-4)^{2}$
9. a) $3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$
b) $(-1) \times(-6) \times(-6) \times(-6) \times(-6) \times(-6)$
c) $4 \times 4 \times 4 \times 5 \times 5 \times 5$
10. a) 6^{3}
b) 7^{4}
c) 2^{12}
11. 11^{3} means that a base of 11 is multiplied 3 times: $11^{3}=1331$. 3^{11} means that a base of 3 is multiplied 11 times: $3^{11}=177147$.
12. a) In the third line, Austin incorrectly distributed the exponent over subtraction to the bases of 1 and 0.05 . You can only distribute an exponent over multiplication: $(a b)^{x}=a^{x} b^{x}$.
$I=100(0.95)^{3} ; I=100(0.857375) ; I \approx 86$. The light intensity is approximately 86%.
b) When $d=15, I=46 \%$.
