Newton's 2 ${ }^{\text {nd }}$ Law: An unbalanced force results in an acceleration.

Stated as a formula:

$$
F_{\text {net }}=m a \quad\left(F_{g}=m g\right)
$$

Note that... units $N=\mathrm{Kg} \mathrm{m} / \mathrm{s}^{2}$

Ex. A 5.0 kg block is pushed to the right along a frictionless track with a force of 10.0 N . What is its acceleration?

$$
\begin{aligned}
F_{\text {met }} & =m a \\
a & =\frac{F_{\text {net }}}{m}=\frac{10.0 \mathrm{~N}}{5.0 \mathrm{~kg}} \\
& =2.0 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Ex. A 650 kg car accelerates at $4.0 \mathrm{~m} / \mathrm{s}^{2}$ south. What is the net force acting on it?

$$
\begin{aligned}
F_{\text {net }} & =m a \\
& =(650 \mathrm{~kg})\left(4.0 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =2600 \mathrm{~N} \text { South }
\end{aligned}
$$

To find $\mathrm{F}_{\text {net }}$ when two forces work together ...
add them up!

Ex. Stan and Kyle are pushing a 75 kg sled along a frictionless ice rink. Stan pushes with 55 N and Kyle pushes with 45 N . Find the sled's acceleration.

$$
\begin{aligned}
F_{\text {net }}= & F_{\text {stan }}+F_{k y l e}=m a \\
a & =\frac{F_{\text {stan }}+F_{k y l e}}{m} \\
& =\frac{5 S N+45 N}{75 \mathrm{~kg}}=1.3 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Ex: A 1500 kg ice cream truck accelerates from
 the net force acting on the truck?

$$
\begin{aligned}
F_{\text {net }} & =\mathrm{ma} a \\
& =\left(1500 \mathrm{k}_{\mathrm{m}}\right)(1.562 \mathrm{~s} / \mathrm{s}) \mathrm{k}, \\
& =2300 \mathrm{~N}
\end{aligned} \quad \begin{aligned}
V & =12.5 \mathrm{~m} / \mathrm{s} \\
V_{0} & =0 \\
a & =? \\
d & = \\
t & =8.0 \mathrm{~s} \\
V & =V_{0}+a t \\
a=\frac{V-V_{0}}{t} & =\frac{12.5-0}{8.0} \\
& =1.5625 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

To find $F_{\text {net }}$ when many forces act on an object:

$$
F_{n e t}=\text { Winners }- \text { Losers }
$$

Ex: The Batmobile exerts a force of $8.50 \times 10^{3} \mathrm{~N}$ east, while friction pulls back on it with a force of 1500 N . If it has a mass of 1250 kg , what is its acceleration?

$$
\begin{aligned}
F_{\text {net }} & =\left[F_{\text {Bat }}-F_{f}=m a\right. \\
a & =\frac{F_{\text {Bat }}-F_{f}}{m}=\frac{8500 \mathrm{~N}-1500 \mathrm{~N}}{1250 \mathrm{~kg}} \\
& =5.6 \mathrm{~m} / \mathrm{s}^{2} E_{\text {cast }}
\end{aligned}
$$

