Unit 3: Kinematics in 2D
3 - Projectile Motion Types 1 and 2
Remember that the x and y-components are ferpunds cularand therefore totally indepen dent

X-components

There is no net force_ working on the projectile in the X and the acceleration is always
Zero .Therefore the only equation we can ever use is: $v_{x}=\frac{d_{x}}{f}$

Y-components

In this case there is always a constant acceleration of $-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (down wards) need to use the \qquad Big Three! . Because of this we
\qquad —.

The only value that can ever be used on both sides is \qquad time because it is a Scalar \qquad -.

Problem Type 1:

A student sits on the roof of their house which is 12 m high. She can launch water-balloons from a slingshot at $14.0 \mathrm{~m} / \mathrm{s}$. If she fires a water-balloon directly horizontally:

b. How far forward will it tr
This depends on: V_{x},

Example: A Cutlass Supreme drives straight out of a parking garage at $8.0 \mathrm{~m} / \mathrm{s}$ and hits the water 3.4 s later.
a. How far did the car fall? down wards
b. What was his total impact velocity? (magnitude and direction) $\quad t=3.45$

$$
\xrightarrow[V_{t}]{V_{x}=8.0_{m} l} V_{y}=-33.32
$$

$$
V_{y}=V_{y 0}^{0}+a t
$$

$$
=\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3.4 \mathrm{~s})
$$

$$
=-33.32 \mathrm{~m} / \mathrm{s}
$$

$$
V_{T}^{2}=V_{x}^{2}+V_{y}{ }^{2} \quad \tan \theta=\frac{33.32}{8.0}
$$

$$
V_{T}=\sqrt{(8.0)^{2}+(-33.32)^{2}}
$$

$$
\theta=\tan ^{-1}\left(\frac{33.32}{8.0}\right)
$$

$$
=34.27 \mathrm{~m} / \mathrm{s}=76.499^{\circ}
$$

$$
34 n / s 77 \cdot \text { below horizontal) }
$$

