Unit 8: Waves
 3-Reflection

When a wave travels into a new medium some is reflected back.
The amount of reflection depends on...
how different the media are.
Light reflected from a plane (flat_) mirror follows the Law of Reflection

$$
\begin{aligned}
\text { Angle of Incidence } & =\text { Angle of Reflection } \\
\theta_{i} & =\theta r^{\text {An }}
\end{aligned}
$$

These angles are measured from the normal a
line per pen dicular to the mirror

Ray Diagrams

When you look at your image in a plane mirror it
is:

- Same size
- The same distance behind the mirror as you are in front of it.
- night side up and laterally inverted .
- Also, the reflected light has the same speed, wavelength and frequency as the incident light.

When drawing ray diagrams we draw two rays of light coming from the object, reflecting of and heading to the observer.

Curved Mirrors:

Concave: curved in wards
Convex: curved outwards

Concave Mirrors:

Principle Axis: line through center of mirror
Centre of Curvature (C): centre of circle that forms mirror
Focal Point (F): point where all light converges
Focal length (f): distance from F to mirror

$$
\text { and from } C \text { to } F
$$

Since the surface is curved the normal is different at each point.

Convex Mirrors:

Consider the situation where an object is beyond the center of curvature:

Now consider if the object were between C and F

Finally consider the case where the object is within the focal point, F.
$\frac{\text { Image: }}{\text { - larger }}$

- upright
- virtual
trace reflected rays

