Work:

1) A student holds a 15 kg bowling ball 1.5 m above the ground for 15 s . How much work is done on the ball? No change in energy $\therefore W=\Delta E=0 J$
2) A block of wood is pushed at a constant velocity with a force of 25.0 N . How far did it travel if 100.0 J of work are done on it?

$$
W=F d \quad d=\frac{W}{F}=\frac{100.0 \mathrm{~J}}{25.0 \mathrm{~N}}=4.00 \mathrm{~m}
$$

3) A 2.0 kg textbook is picked up off the floor and placed on a 0.95 m high desk. How much work is down on the book?

$$
W=m g s h=\left(2.01 \mathrm{k}_{0}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.95 \mathrm{n})=19 \mathrm{~J}
$$

4) A 5.0 kg ball rolls down a ramp as shown. How much work is done on the ball?

$$
\begin{aligned}
W=\Delta E_{p} & =E_{p f}-E_{p i} \\
& =m g h_{f}-m y h_{i} \\
& =0-196=-2.0 \times 10^{2} \mathrm{~J}
\end{aligned}
$$

5) A 5.0 kg block of wood is pushed up a ramp as shown. If a force of 16.0 N is needed to push it up the ramp at a constant velocity, how much work is done in the block?

$$
\begin{aligned}
W & =F d=(16.0 \mathrm{~N})(12.0 \mathrm{~m}) \\
& =192 \mathrm{~J}
\end{aligned}
$$



Potential Energy:

1) How much potential energy does a 12.0 kg bowling ball have if it is sitting on a 0.50 m high chair?

$$
E_{p}=m g h=(12.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.50 \mathrm{~m})=59 \mathrm{~J}
$$

2) A 7.5 kg bowling ball sits on a 1.10 m desk. If a student lifts the ball 0.90 m above the desk, how much potential energy does it have with respect to the desk?

$$
E_{p}=m g h=(7.5 \mathrm{lg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.90 \mathrm{~m})=66 \mathrm{~J}
$$

3) A 5.0 kg bock is pushed up a ramp as shown. How much potential energy does it have when it reaches the top?

$$
E_{p}=m g h=290 \mathrm{~J}
$$


4) If the ramp in question \#3 is frictionless, how much force is required to push the block up the ramp (think work!)?

$$
\omega=F d=\Delta E_{p} \quad F=\frac{E_{p}}{d}=\frac{294 \mathrm{~J}}{13.0 \mathrm{~m}}=23 \mathrm{~N}
$$

Kinetic Energy:

1) How much kinetic energy does a 50.0 g bullet traveling at $365 \mathrm{~m} / \mathrm{s}$ have?
2) If a 78 kg cheetah is running at a speed of $120 \mathrm{~km} / \mathrm{h}$, how much kinetic energy does it have?

$$
E_{n}=\frac{1}{2} v^{2}=\frac{1}{2}\left(78 \mathrm{gl}(33.3 \mathrm{~ms})^{2}=43000 \mathrm{~J}\right.
$$

$$
I_{g}=m y \quad m=\frac{F_{g}}{g}=\frac{3.91}{9.80 \mathrm{~m} / \mathrm{s}^{2}}=0.399 \mathrm{~kg} \quad E_{k}=\frac{1}{2} m v^{2} \quad V=\sqrt{\frac{2 E u}{m}}-\sqrt{\frac{2(775)}{0.399}}=62 \mathrm{~m} / \mathrm{s}
$$

4) A 0.425 kg water balloon is dropped from the top of a school gymnasium onto some unsuspecting physics students (those were the days...). If the gym is 8.50 m high how much kinetic energy does it have just before it hits the ground?

$$
E_{k_{f}}=E_{p i}=m g h=(0.425)(9.80)(8.50)=35 \mathrm{~J}
$$

Law of Conservation of Energy: (Use Law of Con of En OR ELSE!!!!)

1) A 0.85 kg soccer ball is booted straight up in the air. If it left the soccer player's foot at a height of 1.0 m and reaches a height of 47.0 m , what was its kinetic energy immediately after it was kicked? $\longleftarrow$ assuming initial

$$
\begin{aligned}
& \left.\begin{array}{c}
1.0-I \\
\vdots
\end{array}\right] 47.0 \mathrm{~m} \\
& E_{k_{i}}=E_{p f}=m g h_{f}=(0.85 \mathrm{~kg})(9.80 \mathrm{~m} / \mathrm{s})(46.0 \mathrm{~m}) \mathrm{h}=0 \\
& =380 \mathrm{~J}
\end{aligned}
$$

2) What was the speed of the ball in question \#1 when it had reached a height of 24.0 m ?

$$
E_{k_{i}}=E_{k_{f}}+E_{p_{f}} \quad E_{k_{f}}=E_{k_{i}}-E_{p f} \quad \frac{1}{2} m v_{f}^{2}=E_{u_{i}}-m g h_{f} \quad V_{f}=\sqrt{\frac{2\left(E_{k_{i}}-m g h_{f}\right)}{m}}=21 \mathrm{~m} / \mathrm{s}
$$

3) A 0.575 kg smurf is thrown straight down from a 10.0 m high toadstool. If his final speed is $18.0 \mathrm{~m} / \mathrm{s}$, how fast was he traveling initially?

$$
\begin{aligned}
E_{k_{i}}+E_{p_{i}} & =E_{k_{f}} \\
\frac{1}{2} m v_{i}^{2}+m g h_{i} & =\frac{1}{2} m v_{f}^{2}
\end{aligned}
$$

$$
\begin{aligned}
V_{i} & =\sqrt{V_{f}^{2}-2 g h_{i}} \\
& =\sqrt{(18.0)^{2}-2(9.80)(10.0)}=11 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$



$$
\begin{aligned}
& E_{k_{i}}+E_{p_{i}}=E_{u_{f}}+E_{p_{f}}^{0} \\
& E_{u_{f}}=E_{k_{i}}+E_{p_{i}}=\frac{1}{2} m v_{j}^{2}+m g h_{i}
\end{aligned}
$$

4) Another 0.575 kg smurf (there are 99 of them...) is now thrown horizontally from a 50.0 m cliff at $8.00 \mathrm{~m} / \mathrm{s}$. how much kinetic energy does it have when it is 15.0 m from the ground?

$$
\begin{aligned}
& =\frac{1}{2}(0.575 \mathrm{~kg})(8.00 \mathrm{~m} / \mathrm{s})^{2}+(0.575 \mathrm{~kg})\left(9.80^{\left.\mathrm{m} / \mathrm{s}^{2}\right)(35.0 \mathrm{n})}=215 \mathrm{~J}\right.
\end{aligned}
$$

5) A box slides down a frictionless ramp as shown. How fast is it traveling at the bottom?


$$
\begin{aligned}
& E_{p_{i}}=E_{k_{t}} \\
& m g h=\frac{1}{2} m v^{2}
\end{aligned}
$$

6) A pendulum if pulled aside as shown. The pendulum bob has a mass of 0.500 kg . If the pendulum is released from this point how fast will it be moving when it returns to the equilibrium point?

$$
\begin{aligned}
E_{p i} & =E_{n_{f}} \\
m q n_{i} & =\frac{1}{2} m v_{f}^{2}
\end{aligned}
$$

Power and Efficiency

1) A 12.0 kg block is pushed up an 8.0 m ramp at a constant speed of $2.50 \mathrm{~m} / \mathrm{s}$ with a force of 28.0 N . How much power does this require?
2) A 25.0 kg crate it lifted on to a 2.0 m ledge by a worker that exerts 325 W of power. How long does it take

$$
\text { to reach the ledge? } \begin{aligned}
P=\frac{w}{t}=\frac{\Delta E_{p}}{t}=\frac{m g h}{t} & =\frac{m g h}{p}=\frac{\left(25.0 l_{4}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(2.0 \mathrm{~m})}{325 \mathrm{~W}} \\
& =1.5 \mathrm{~s}
\end{aligned}
$$

3) A 0.390 kg hockey puck is accelerated across a frictionless sheet of ice from rest to a speed of $15.0 \mathrm{~m} / \mathrm{s}$ in 1.5 m. How much power is exerted on the puck?

$$
\begin{array}{ll}
V=15.0 \mathrm{~m} / \mathrm{s} & a=\frac{v^{2}-v_{0}^{2}}{2 d} \\
V_{0}=0 & =75 \mathrm{~m} / \mathrm{s}^{2} \\
a=1.5 \mathrm{~m} & \\
d=1.5 & =\frac{v-v_{0}}{a}=0.20 \mathrm{~s} \\
t=? & t
\end{array}
$$

4) A 5.0 kg box is sliding across the floor at $2.00 \mathrm{~m} / \mathrm{s}$ when it is accelerated to $8.00 \mathrm{~m} / \mathrm{s}$ in 1.80 s . If the coefficient of friction is 0.220 how much power is required to accelerate the box?
(3)


$$
\begin{aligned}
& V=8.00 \mathrm{~m} / \mathrm{s} \\
& V=2.00 \mathrm{~m} / \mathrm{s} \\
& a=? \\
& d=?
\end{aligned}
$$

$$
\text { (2) } d=\frac{v^{2}-v_{0}^{2}}{2 a}=9.00 \mathrm{~m}
$$

$$
\text { (5) } \begin{aligned}
\rho & =\frac{W}{t}=\frac{F_{\text {app }} d}{t} \\
& =\frac{(27.45)(9.00)}{1.80} \\
& =137 \omega
\end{aligned}
$$

(4) $F_{\text {net }}=F_{a p p}-F_{f}=m a$

$$
F_{\text {app }}=\text { ma }+F_{f}=(5.0)(3.333)+10.78=27.45 \mathrm{~N}
$$

5) A 7.0 kg box is pushed up the ramp shown in 3.25 s . If it requires a force of 40.0 N to push at a constant velocity, what is the efficiency of the ramp?

$$
\begin{aligned}
W_{\text {out }}=\text { mg } & =(7.0)(9.80)(6.0) & & E_{f f}
\end{aligned}=\frac{W_{\text {out }}}{W_{\text {in }}} \times 100 \%
$$

$6 \longdiv { A } 1 2 5 0$ W electric motor is used to lift an 80.0 kg weight to a height of 4.0 m in 3.00 s . What is the efficiency

$$
\begin{aligned}
P_{\text {out }}=\frac{W}{t} & =\frac{\Delta E_{p}}{t}=\frac{m g h}{t} \\
& =\frac{(80.0)(9.80)(4.0)}{3.00}=1045 \mathrm{~W} \quad=\frac{1045 \mathrm{~W}}{1250 \mathrm{~W}} \times 100 \%=84 \%
\end{aligned}
$$

7) A pulley has an efficiency of $85.0 \%$. If 475 J are exerted to lift a 16.0 kg weight, how high is the weight lifted?

\[

\]

