Physics 11 - Wave Worksheet

1. A physics student sitting on the beach notices that a wave hits the beach every 5.0 seconds, and the waves seem to be about 15 m apart. What is the speed of these waves?

$$
V=\frac{d}{t}=\frac{15 \mathrm{~m}}{5.0 \mathrm{~s}}=3.0 \mathrm{~m} / \mathrm{s}
$$

2. What is the frequency of laser light that has a wavelength of 623 nm ?

$$
623 \mathrm{~nm}=623 \times 10^{-9} \mathrm{~m}
$$

$$
v=\lambda f \quad f=\frac{v}{\lambda}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{6.23 \times 10^{-7} \mathrm{~m}}=4.82 \times 10^{14} \mathrm{~Hz}
$$

3. Out in the ocean, a wave crest 3.2 m high meets a wave trough from another direction which is 2.6 m deep. How high is the resulting wave?

Doppler Effect polarization refraction interference

A wave hits the beach at a 30 degree angle, and a wave is observed leaving the beach at 30 degrees.
A wave enters shallow water and the wavelength decreases
A sailboat seeks shelter behind an island in a storm, but finds that there are still waves behind the island A fisherman throws his spear directly at a fish seen in the water, but misses.

A student walking beside the E\&N railway track notices that the pitch of the train sound increases as the train approaches A student puts on a pair of sunglasses when snowboarding, and notices that it is now easier to see the moguls.
A laser light shines into a beaker of water. The beam is seen to bend at the point where the light enters the water.
A rogue wave capsizes a small freighter in the North Sea.
5. Ocean waves enter a harbour through two entrancoc50mapart. On the seawall which is 200 m from thesentrances, al observer notices very large waves hitting the wall every 35 m . What is the wavelength of these waves?

6. Laser light with a wavelength of 632 nm is put through a diffraction grating where the openings are 0.40 mexpart. How far from the central bright beam will the $3^{\text {rd }}$ bright sportive on the wall 1.8 m away?

7. A beam of light travels from air into diamond at an angle of 35°. What is the angle of refraction of the light in the diamond $(n=2.42)$?

$$
\begin{gathered}
n_{i} \sin \theta_{i}=n_{r} \sin \theta_{r} \quad \sin \theta_{r}=\frac{n_{r} \sin e^{i}}{n_{r}}=\frac{(1.0003) \sin 35}{242}=0.237 \\
\theta_{r}=14^{\circ}
\end{gathered}
$$

8. Light traveling in water enters an unknown substance an angle of 43°. The angle of refraction in the unknown substance is 48°. What is the index of refraction of the unknown substance?

$$
n_{i} \sin \theta_{i}=n_{r} \sin \theta_{r} \quad n_{r}=\frac{n_{i} \sin \theta_{i}}{\sin \theta_{r}}=\frac{(1.33) \sin 43^{\circ}}{\sin 48^{\circ}}=1.22
$$

9. What is the critical angle for light traveling from diamond $(n=2.42)$ into glass $(n=1.6)$?

10. Light traveling in a vacuum with a wavelength of 710 nm enters a plexiglass window on the space station at an angle of 65°. The index of refraction for plexiglass is 1.50
a) What is the frequency of this light in a vacuum?

$$
V=\lambda f \quad f=\frac{V}{\lambda}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{7.10 \times 10^{-7} \mathrm{~m}}=4.2 \times 10^{14} \mathrm{~Hz}
$$

b) What is the frequency of this light in the plexiglass?
fregerncy doses not change when refract ion occurs

$$
\therefore \quad f=4.2 \times 10^{14} \mathrm{~Hz}
$$

c) What is the speed of the light in plexiglass?

$$
\begin{aligned}
& \text { What is the speed of the light in plexiglass? } \\
& n=\frac{C}{v} \quad v=\frac{C}{n}=\frac{3.0010^{8} / \mathrm{s}}{1.50}=2.00 \times 10^{8} \mathrm{mls}
\end{aligned}
$$

d) What is the wavelength of the light in plexiglass?

$$
\begin{aligned}
& \text { What is the wavelength of the light in plexiglass? } \quad \lambda=\frac{V}{f}=\frac{2.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{4.2 \times 10^{14} \mathrm{H}_{2}}=\begin{array}{l}
4.76 \times 10^{-7} \mathrm{~m} \\
476 \mathrm{~nm}
\end{array}
\end{aligned}
$$

e) What is angle of refraction of the light in plexiglass?
Velum $\left.\right|_{\text {Plexiglas }}$

$$
\begin{aligned}
& n_{i} \sin \theta_{i}=n_{r} \sin \theta_{r} \\
& \sin \theta_{r}=\frac{n_{i} \sin \theta_{i}}{n_{r}}=\frac{(1) \sin 65^{\prime}}{1.50}=0.604 \\
& \theta_{r}=37^{\circ}
\end{aligned}
$$

