Worksheet 3.3

Projectiles in 2D
Type 1

1. A rock is thrown horizontally from the top of a cliff 98 m high, with a horizontal speed of 27 m / s.
(a) For what interval of time is the rock in the air?
(b) How far from the base of the cliff does the rock land?
(c) With what velocity does the rock hit?
2. A rescue pilot wishes to drop a package of emergency supplies so that it lands as close as possible to a target. If the plane travels with a velocity of $81 \mathrm{~m} / \mathrm{s}$ and is flying 125 m above the target, how far away (horizontally) from the target must the rescue pilot drop the package?
3. A bullet is fired with a horizontal velocity of $330 \mathrm{~m} / \mathrm{s}$ from a height of 1.6 m above ground. Assuming the ground is level how far from the gun will the bullet hit the ground?
4. A fireman is standing on top of a building 20.0 m high. He finds that if he holds the hose so that water issues from it horizontally at $12 \mathrm{~m} / \mathrm{s}$, the water will hit a burning wall of an adjacent building at a height of 15.0 m above the ground. What is the horizontal distance from the fireman to the building?

Type 2

5. An earth bound golfer strikes a golf ball giving it a velocity of $48 \mathrm{~m} / \mathrm{s}$ at an angle of 50° to the horizontal.
(a) What are the vertical and horizontal components of the ball's initial velocity?
(b) How long is the ball in the air?
(c) What is the horizontal distance covered by the ball while in flight?
(d) What velocity does the ball have at the top of its trajectory?
6. A golf ball was struck from the first tee at Lunar Golf and Country Club. It was given a velocity of $48 \mathrm{~m} / \mathrm{s}$ at an angle of 40° to the horizontal. On the moon, $\mathrm{a}_{\text {gravity }}=-1.6 \mathrm{~m} / \mathrm{s}^{2}$.
(a) What are the vertical and horizontal components of the ball's initial velocity?
(b) For what interval of time is the ball in flight?
(c) How far will the ball travel horizontally?
7. An archer standing on the back of a pickup truck moving at $28 \mathrm{~m} / \mathrm{s}$ fires an arrow straight up at a duck flying directly overhead. The archer misses the duck! The arrow was fired with an initial velocity of $49 \mathrm{~m} / \mathrm{s}$ relative to the truck.
(a) For how long will the arrow be in the air?
(b) How far will the truck travel while the arrow is in the air?
(c) Where, in relation to the "duckless" archer, will the arrow come down? Will the archer have to 'duck'?
8. A ball is thrown with a velocity of $24 \mathrm{~m} / \mathrm{s}$ at an angle of 30° to the horizontal.
(a) What are the vertical and horizontal components of the initial velocity?
(b) How long is the ball in the air?
(c) How far away will the ball land?
(d) To what maximum height will the ball rise?
(e) With what velocity will the ball land?
9. A youngster hits a baseball giving it a velocity of $22 \mathrm{~m} / \mathrm{s}$ at an angle of 62° with the horizontal. How far will the ball travel before it is caught by a fielder (assuming the fielder catches the ball at the same height that it is hit)?
10. On level ground, a football is thrown up at a certain angle. The ball is in the air 2.0 s and strikes the ground 30.0 m from the thrower. What was the ball's total initial velocity?

Type 3

11. A pebble is fired from a slingshot with a velocity of $30 \mathrm{~m} / \mathrm{s}$. It is fired at an angle of 30° to the horizontal. If its flight is interrupted by a vertical wall 12 m away, at what height does it hit the wall?
12. A diver takes off with a speed of $8.0 \mathrm{~m} / \mathrm{s}$ from a 3.0 m high diving board at 30° above the horizontal. How much later does she strike the water?
13. A pilot cuts loose two fuel tanks in an effort to gain altitude. At the time of release, the plane was 120 m above the ground and traveling upward at 30° to the horizontal, with a speed of 84 m / s. For how long did the tanks fall and with what speed did they hit the ground?
1) a. $4.5 \mathrm{~s} \mathrm{~b} .120 \mathrm{~m} \mathrm{c} .51 \mathrm{~m} / \mathrm{s} 58^{\circ}$ below horizontal 2) $410 \mathrm{~m} \mathrm{3)} 190 \mathrm{~m} \mathrm{4)} 12 \mathrm{~m}$
2) a. $v x=31 \mathrm{~m} / \mathrm{s}$ vyo $=37 \mathrm{~m} / \mathrm{s}$ b. 7.5 s c. $230 \mathrm{~m} \mathrm{d} 31 \mathrm{~m} /$.
3) a. vx $=37 \mathrm{~m} / \mathrm{s}$ vyo $=31 \mathrm{~m} / \mathrm{s}$ b. 39 s c. 1400 m
4) a. $t=10 \mathrm{~s} b . d x=280 \mathrm{~m}$ c. yes
5) a. $v x=21 \mathrm{~m} / \mathrm{s}$ vyo $=12 \mathrm{~m} / \mathrm{s}$ b. $\mathrm{t}=2.4 \mathrm{~s} \mathrm{c} \mathrm{dx}=.51 \mathrm{~m} \mathrm{~d} . \mathrm{dy}=7.3 \mathrm{~m} \mathrm{e} .24 \mathrm{~m} / \mathrm{s} 30^{\circ}$ below horizontal
6) $\mathrm{dx}=41 \mathrm{~m}$
7) $\mathrm{v}=18 \mathrm{~m} / \mathrm{s} 33^{\circ}$ above horizontal
8) $\mathrm{dy}=5.9 \mathrm{~m}$
9) $t=1.3 \mathrm{~s}$
10) $t=11 \mathrm{~s}, \mathrm{v}=97 \mathrm{~m} / \mathrm{s}$
